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Methylation-based enrichment 
facilitates low-cost, noninvasive 
genomic scale sequencing of 
populations from feces
Kenneth L. Chiou  1,2 & Christina M. Bergey3,4,5,6

Obtaining high-quality samples from wild animals is a major obstacle for genomic studies of many taxa, 
particularly at the population level, as collection methods for such samples are typically invasive. DNA 
from feces is easy to obtain noninvasively, but is dominated by bacterial and other non-host DNA. The 
high proportion of non-host DNA drastically reduces the efficiency of high-throughput sequencing for 
host animal genomics. To address this issue, we developed an inexpensive capture method for enriching 
host DNA from noninvasive fecal samples. Our method exploits natural differences in CpG-methylation 
density between vertebrate and bacterial genomes to preferentially bind and isolate host DNA from 
majority-bacterial samples. We demonstrate that the enrichment is robust, efficient, and compatible 
with downstream library preparation methods useful for population studies (e.g., RADseq). Compared 
to other enrichment strategies, our method is quick and inexpensive, adding only a negligible cost to 
sample preparation. In combination with downstream methods such as RADseq, our approach allows 
for cost-effective and customizable genomic-scale genotyping that was previously feasible in practice 
only with invasive samples. Because feces are widely available and convenient to collect, our method 
empowers researchers to explore genomic-scale population-level questions in organisms for which 
invasive sampling is challenging or undesirable.

The past decade has witnessed a rapid transformation of biological studies with the continuing development 
and adoption of massively parallel sequencing technology. This sequencing revolution, however, has thus far 
had a relatively muted impact on studies of wild nonmodel organisms due largely to the difficulty of obtaining 
high-quality samples. This problem is particularly salient for endangered animals, cryptic animals, or animals for 
which it is otherwise difficult, undesirable, or unethical to obtain samples invasively.

Field researchers working with wild animals have explored several noninvasive sample types for DNA analysis 
including feces, hair, urine, saliva, feathers, skin, and nails1. Of these, feces may be the most readily available in 
many taxa2. Indeed, since PCR amplification of DNA from feces was first demonstrated in the 1990s3, noninvasive 
genetic studies from feces have revolutionized our understanding of the evolution, population structure, phyloge-
ography, and behavior of nonmodel organisms. PCR amplification, however, is effective only for short sequences 
of DNA. The ability to generate cost-effective genomic-scale data of animals from feces using massively parallel 
sequencing would therefore constitute an important methodological advance towards bringing a greater number 
of wild organism studies into the genomic age.

Feces presents significant challenges for genetic analysis. DNA in feces is often fragmented and low in quan-
tity. Fecal DNA extractions are further characterized by a frequent presence of co-extracted PCR inhibitors, 
sometimes complicating PCR detection of genotypes1, particularly with long amplicons. Finally, endogenous 
(host) DNA in feces constitutes a very low proportion, typically less than 5%4–6, of total fecal DNA. Instead, fecal 
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DNA contains a preponderance of DNA from exogenous (non-host) sources such as gut microbes, digesta, intes-
tinal parasites, and environmental organisms. Gut bacteria pose a particular challenge as they account for the 
highest proportion of DNA in feces4,5.

Because of the high representation of exogenous DNA in feces, shotgun sequencing of fecal DNA would yield 
only a small proportion of reads matching the host genome. For genomic studies of host organisms, particularly 
those targeting populations, this represents a crippling obstacle in the presence of typical financial constraints. 
Without an effective enrichment procedure, sequencing of fecal DNA would be less efficient than that of inva-
sively obtained “high-quality” DNA by at least one order of magnitude regardless of improvements in sequencing 
throughput or cost.

Attempts to enrich host DNA from feces for genomic analysis5,6 have thus far employed targeted sequence 
capture methodologies. Sequence capture, like PCR, enriches DNA based on sequence specificity but unlike tra-
ditional PCR can work at any scale from a single locus7 to a whole genome6,8,9. This method involves hybridizing 
DNA or RNA “baits,” either affixed to an array10,11 or to magnetic beads in solution12, to a mixture of target and 
nontarget sequences, thereby capturing targeted DNA from the mixture. Sequence capture has been used for 
instance to enrich human exomes13, reduced-representation genomes14–16, host DNA from ancient or museum 
specimens9,17–19, and pathogen genomes from human clinical samples8. While the cost of custom oligonucleotide 
bait synthesis remains high, methods for transcribing custom baits from existing DNA templates8,9 have driven 
costs significantly down, increasing sequence capture’s appeal.

Perry et al.5 first successfully enriched host DNA from feces at the genomic scale. Using a modified sequence 
capture employing custom-synthesized baits, they were able to highly enrich 1.5 megabases of chromosome 21, 
the X chromosome, and the mitochondrial genome from fecal samples of 6 captive chimpanzees. Their protocol, 
however, remains prohibitively expensive for population-level analysis due to the high cost of bait synthesis. More 
recently, Snyder-Mackler et al.6 performed whole-genome capture on fecal DNA, using RNA baits transcribed in 
vitro from high quality baboon samples to enrich host genomes from 62 wild baboons. Resulting libraries were 
sequenced to low coverage (mean 0.49×), but nevertheless provided sufficient information for reconstructing 
pedigree relationships.

Despite these methodological advances, targeted sequence capture has distinct drawbacks. To avoid the high 
cost of bait synthesis, RNA baits must first be transcribed from high-quality genomic DNA that is consumed 
by the process, limiting its appeal when working with species for which high-quality DNA is difficult to obtain 
or in short supply. The processes of both bait generation and hybridization with fecal DNA are labor-intensive 
and time-consuming, with the hybridization including an incubation step that alone takes 1–3 days6. Because 
both RNA baits and the gDNA used to transcribe them are eventually depleted, the composition of RNA baits 
varies between bait sets, potentially impeding comparison of samples sequenced using different RNA baits and 
gDNA templates. Trans genomic captures (i.e. capturing DNA using baits from a different species) may compli-
cate enrichment and introduce at least some capture biases20, which will be a particular impediment for genomic 
studies for which high-quality DNA from related taxa is not accessible. Sequence capture may also introduce 
biases toward the capture of low-complexity, highly repetitive genomic regions, as well as an excess of fragments 
from the mitochondrial genome6,9,21.

We have developed a method that makes noninvasive population genomics economically and practically 
feasible for the first time, by exploiting natural, evolutionarily ancient differences in CpG-methylation densi-
ties between vertebrate and bacterial genomes to enrich the host genome from feces. This method, which we 
call FecalSeq, uses methyl-CpG-binding domain (MBD) proteins to selectively bind and isolate DNA with high 
CpG-methylation density. Modified after techniques to enrich the microbiome from vertebrate samples22, our 
method employs a bait protein created by genetically fusing the human methyl-CpG binding domain protein 2 
(MBD2) to the Fc tail of human IgG1. The resulting MBD2-Fc protein is then bound by a paramagnetic Protein A 
immunoprecipitation bead to create a complex that selectively binds double-stranded DNA with 5-methyl CpG 
dinucleotides. Because vertebrate DNA contains a high frequency of methylated CpGs23,24 while bacterial DNA 
does not25,26, this MBD bait complex selectively binds host DNA (Fig. 1). This enrichment method is inexpen-
sive and, crucially, captures target DNA without modification, thereby enabling downstream library preparation 
techniques including complexity reduction-based sequencing methods such as RADseq, which we validate in this 
study by preparing and sequencing double-digest RADseq libraries27. Because of these properties, our method 
is well-suited for population genomic studies requiring high sequencing coverage, including those of nonmodel 
organisms for which few resources (e.g., high-quality samples or reference genomes) exist.

Results
Our enrichment approach captures eukaryotic DNA using a methylated CpG binding domain protein fused to 
the Fc fragment of human IgG (MBD2-Fc) to selectively target sequences with high CpG methylation density22.

To evaluate our approach, we enriched DNA extractions from the feces of 6 captive and 46 wild baboons, 
which we then used to prepare and sequence ddRADseq libraries. We also prepared ddRADseq libraries from 
blood-derived genomic DNA of all six captive baboons to facilitate controlled (same-individual) comparisons of 
blood and fecal libraries. All libraries were sequenced using Illumina sequencing.

Quantitative PCR estimates of starting host DNA proportions in fecal DNA extracts ranged widely, but were 
substantially lower in samples obtained from the wild (captive samples: mean 5.3%, range <0.01–17.4%; wild 
samples: mean 0.6%, range <0.01–4.9%; Supplemental Tables S1–S2).

Based on two pilot libraries constructed from MBD-enriched fecal DNA, we found that there was large 
variation in the proportion of reads mapping to the baboon reference genome (mean 24.8%, range 0.7–81.2%; 
Supplemental Fig. S1; Supplemental Table S3), with the read mapping proportion correlating with starting 
host DNA proportions as estimated via qPCR (library A: r2 = 0.7338; p = 0.03; library B: r2 = 0.9127, p < 0.01). 
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Endogenous DNA proportions on average increased 13-fold as estimated via comparison of pre-enrichment 
host proportion (from qPCR) and post-enrichment proportion of reads mapped (range 4.4–29.6; two samples 
removed due to starting proportions too low to quantify).

While some samples in our pilot libraries had high host DNA proportions following enrichment, these sam-
ples tended to already have high host DNA proportions prior to enrichment. Host DNA proportions following 
enrichment in the pilot libraries averaged only 4%, for instance, when samples with starting host DNA propor-
tions greater than 1% were excluded. Because wild fecal DNA samples in our dataset on average started with less 
than 1% host DNA, we undertook a series of protocol optimization experiments to maximize the enrichment of 
these “low-quality” samples (Supplemental Tables S4–S7).

Using a revised protocol based on our optimization experiments (Supplemental Protocol), we created and 
sequenced a third library from MBD-enriched fecal DNA. After noting substantial improvements in enrichment, 
we finally sequenced a fourth library with MBD-enriched fecal DNA from 40 wild baboons.

Despite having similar or even lower starting host DNA proportions, read mapping proportions in the 
third library were substantially higher than the prior two (mean 49.1%, range 8.9–75.3%; Fig. S3; Supplemental 

Figure 1. Overview of the FecalSeq method.
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Table S3). Endogenous DNA proportions on average increased 318-fold (range 4.3–2632.2; one sample removed 
due to starting proportion too low to quantify).

The fourth library consisting entirely of fecal DNA from wild animals had the lowest starting concentrations 
of host DNA (mean 0.3%, range < 0.01–3.1%). Following enrichment, however, host DNA proportions were 
nonetheless higher than our pilot libraries (mean 28.8%, range 1.5–73.6%; Supplemental Fig. S1; Supplemental 
Table S3). Endogenous DNA proportions on average increased 195-fold (range 23.7–486.9).

Overall, the revised protocol produced substantially higher enrichment, measured as fold increases in the 
proportion of host DNA, particularly for samples with very low starting proportions of host DNA (Fig. 2). While 
we sometimes were forced to use multiple rounds of extraction, thereby introducing variation in starting host 
proportions across same-individual trials, the revised protocol nonetheless exhibited robust improvement in read 
mapping proportions even when starting host proportions were substantially lower.

The distribution of blood- and fecal-derived reads did not differ significantly in the length of RADtags, the GC 
percentage, or the local CpG density, defined as the number of CpG sites in a region ± 5,000 bp from the bounda-
ries of a RADtag (Wilcoxon rank sum tests, p > 0.99 for all three tests; Supplemental Fig. S2).

MBD binding may in principle select for genomic regions with relatively high CpG-methylation density, lead-
ing to dropout of other loci. Assessment of the concordance between blood- and feces-derived reads from the 
same individual was complicated by the correlation in ddRADseq between total reads and expected RADtags 
recovered and thereby SNPs discovered: a given RADtag is sequenced at a frequency inversely proportional to 
the deviation of its length from the mean of the size selection. Thus, we had to discern between dropout due to 
coverage-related stochasticity inherent in ddRADseq27 and that due to MBD enrichment. To perform this com-
parison, we computed the proportion of unique alleles between blood- and feces-derived RADtags from the same 
individual. For this test, we controlled for variation in sequencing coverage by randomly sampling reads as nec-
essary in order to equalize total coverage among same-individual samples. Allelic dropout due to MBD enrich-
ment would result in a higher proportion of alleles unique to blood-derived libraries relative to feces-derived 
libraries. We did not find a significant discrepancy (multi-sample-called SNPs: mean proportion unique alleles 
in blood = 2.3%, mean proportion unique alleles in feces = 2.3%; Wilcoxon signed rank test, p = 0.97; Fig. 3A).

Dropout of entire RADtags is easily detectable given a reference genome or sufficient samples for compar-
ison; dropout of a single allele at heterozygous sites is a more insidious potential bias. Allelic dropout due to 
MBD enrichment would result in a decrease in heterozygosity in MBD-enriched fecal libraries. Inbreeding coef-
ficients (F) computed from same-individual RADtags exhibited in some cases higher values for feces-derived 
samples (Fig. 3B). This difference, however, was not statistically significant (mean Fblood = 0.63; mean Ffeces = 0.71; 
Wilcoxon signed rank test, p = 0.47), indicating low allelic dropout attributable to the MBD enrichment. For this 
test, we also controlled for variation in sequencing coverage as described above.

As investigations of population structure are one potential application of our method, we visualized the wild 
and captive baboons’ identity-by-state via multidimensional scaling (MDS) using PLINK28,29, and confirmed that 
individuals clustered by their known species or ancestry and that blood- and feces-derived reads from the same 
individual were close together in the MDS space (Fig. 3C). The results of this “sanity check” are unsurprising, 

Figure 2. Comparison of the enrichment magnitude using the manufacturer protocol and the revised protocol. 
(A) Violin plots with the mean depicted show that the revised protocol results in substantially higher fold 
enrichment by approximately one order of magnitude. (B) A scatter plot shows that the revised protocol is 
particularly effective for samples with low starting quantities of host DNA. While some samples still had 
relatively small percentages of reads mapping to the baboon reference genome, these generally also exhibited 
the highest fold increases.
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as variance in samples encapsulated by the first MDS components is expected to reflect population and species 
membership.

Stringent filtration of SNP sets, as would be implemented in a standard population genetic study, reduced the 
apparent biases attributable to fecal enrichment, measured both as total SNPs with a significant association with 
sample type (unfiltered: 25,079 out of 591,726, or 4.2%; filtered: 13 out of 7,202, or 0.2%) as well as total SNPs 
with significant missingness assessed via a chi-square test (unfiltered: 69,753 out of 550,224, or 12.7%; filtered: 
0 out of 5,602, or 0%). Though more work is needed to quantify more exactly the extent and causal factors that 
lead to missingness, many population genetic analyses are robust to the low level of dropout our analyses reveal 
in addition to that which is inherent in the RADseq family of techniques30.

Discussion
Our methylation-based capture method achieves substantial enrichment of host DNA from fecal samples. Using 
our revised protocol developed through experimentation, we produced a mean 195-fold enrichment on our final 
library consisting entirely of fecal DNA obtained noninvasively under remote field conditions, with most samples 
nearly a decade old. A mean 28.8% of reads mapped to the baboon genome, despite starting with only a mean 0.34% 
of host DNA. Using fecal and blood DNA obtained from captive animals, we further demonstrate that feces-derived 
genotyping data following our method are concordant with corresponding data obtained from blood.

Feces are among the most readily accessible sources of information on wild animals1, and are particularly use-
ful for population-level studies or studies of endangered or elusive species for which obtaining high-quality sam-
ples is difficult or undesirable. By exploiting methylation differences rather than sequence differences between 

Figure 3. Concordance between blood- and feces-derived genotyping data from the same individuals. Colors 
symbolize the six captive individuals included in our study. Within these individuals, we did not find significant 
differences in (A) the proportion of unique alleles or (B) inbreeding coefficients from blood- and feces-derived 
libraries. The multidimensional scaling plot of identity-by-state shows (C) population structuring concordant 
with the known ancestry of animals (Supplemental Table S1). Distances between feces- and blood-derived sets 
of genotypes from the same individual are minimal, indicating that noise added by the enrichment method is 
dwarfed by the population structure signal in this baboon population dataset.
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host and bacterial DNA, FecalSeq is an enrichment strategy that requires neither prior genome sequence knowl-
edge nor the use of high-quality DNA for preparation of capture baits. This results in enrichment which is both 
inexpensive and replicable. The enrichment procedure is also relatively rapid and uncomplicated. Using a 96-well 
plate, we performed two sequential rounds of enrichment on all forty samples in our final library within a day 
(see Supplemental Protocol).

Compared to comparable experiments using high-quality DNA samples such as blood, our enrichment 
method introduces extremely low added costs. After excluding shared costs such as DNA extraction, library 
preparation, and sequencing, major costs associated with our method are qPCR reagents for initial quality assess-
ment of fecal DNA samples and enrichment reagents for capturing the host genome. qPCR reagents cost about 
$0.60 USD per reaction (or $1.20 per sample assuming samples are run in duplicate). For our enrichment pro-
tocol, the amount of reagents used will vary based on the starting proportion of host DNA in the sample (see 
Supplemental Protocol). Assuming fecal DNA samples on average contain 2.5% host DNA, a single enrichment 
kit will support a total of 240 enrichment reactions at $0.70 per sample. Based on our experience, most fecal DNA 
samples contain less than 2.5% host DNA and will therefore require less reagents, further lowering the cost per 
sample. Following enrichment, we purified DNA using homemade SPRI beads31 which add a very low cost per 
sample (about $0.10 per sample).

Altogether, compared to high-quality DNA experiments, the marginal cost of our method is approximately an 
additional $2 USD per sample factoring in duplicate qPCR reactions, enrichment, and SPRI bead cleanup. These 
costs represent a substantial decrease relative to enrichment methods based on oligonucleotide-based sequence 
capture5,6, which at present represents the only other published strategy for enriching fecal DNA. Snyder-Mackler 
et al.6 present the most cost-effective sequence-capture-based strategy to date at a cost of $60 per sample, or $29 
per sample when using a multiplexed capture strategy on 10 samples at a time. Overall, our strategy therefore 
decreases the cost of enrichment by about one order of magnitude.

Importantly, FecalSeq is to our knowledge the first genomic-scale fecal DNA enrichment method that is com-
patible with most downstream library preparation methods for massively parallel sequencing. Through our use 
of ddRADseq, we demonstrate that our method facilitates low-cost high-capacity genotyping of wild populations 
without introducing significant bias. Further, because ddRADseq is customizable27, there is substantial flexibil-
ity for researchers to optimize the number of samples and the fraction of the genome sequenced for particular 
research questions. This is not possible for libraries prepared using targeted sequence capture, which are therefore 
currently limited mainly to low-coverage analyses at the population level6. Transcription of sequence capture 
baits from reduced-representation libraries may potentially help address this problem14–16, but its efficacy for fecal 
DNA has yet to be demonstrated.

Although ideally suited to taxa with a reference genome, genotyping via double-digest RADseq is possible for 
species that lack a closely related reference genome. We aligned our sequencing reads to the baboon reference 
genome for this study, but our approach is likely also applicable to species without a reference genome. A refer-
ence genome from a more phylogenetically distant species can be used, although reads from divergent regions 
will fail to map. If a nearby genome is not available, an additional pre-screening step would be necessary, in 
which exogenous reads are filtered out through comparison to the nearest available genome, before proceeding 
to clustering and variant identification as per normal reference-free ddRADseq methods. Although these caveats 
will be mitigated as more genomes become available, the proximity of study individuals to an available reference 
genome is an important consideration when deciding if ddRADseq methods, including ddRADseq following our 
enrichment method, are suitable to address the research goals.

We robustly found that sequencing efficiency (percentage of reads assigned to target genome) of 
MBD-enriched fecal DNA libraries correlates strongly with starting proportions of host DNA, echoing findings 
using other capture methods6. Future attention should therefore be directed towards fecal sample collection, stor-
age, and extraction methods that maximize the selective recovery of host nuclear DNA32. While we demonstrated 
effective genotyping of samples with often very low starting proportions of host DNA (the vast majority < 0.5%), 
future studies may consider pre-screening extracted DNA samples using qPCR to select for samples with high 
starting proportions of host DNA.

We found that, for unknown reasons, starting host DNA concentration for fecal samples collected in captive 
conditions was higher than that of fecal samples collected from the wild, despite consistent sample collection and 
processing protocols. We speculate that these differences may be due to either the freshness of samples collected 
in captivity or to dietary differences between captivity and the wild. Because our wild fecal samples were col-
lected under common biological field conditions (e.g., tropical heat and humidity, lack of refrigeration), our study 
underscores the need to validate enrichment methods for wild animals using samples from the wild.

Low starting proportions of host DNA present a challenge not only because they result in lower sequencing 
efficiency, but also because they correlate with low absolute quantities of DNA belonging to the host organism. 
In some cases, particularly in samples collected from wild animals under field conditions, starting proportions 
of host DNA were so low that only approximately 0.1 ng of target DNA was available in a 1 μg fecal DNA extract. 
Given the large genome sizes of baboons (approximately 3 Gb) and many other vertebrates, substantial allelic 
dropout is expected in these cases. Significantly, this challenge cannot be fully addressed by this or any other 
enrichment method and remains an important consideration for researchers working with feces. It can be mini-
mized, however, by optimizing the enrichment procedures to maximize the recovery of target DNA present in a 
fecal DNA sample, as well as by increasing the total amount of starting fecal DNA.

Because MBD enrichment partitions DNA based on CpG-methylation density, FecalSeq does not enrich 
hypomethylated host mitochondrial DNA33. While this may be undesirable for studies requiring the matriline-
ally inherited marker, it also precludes the disproportionately high representation of mitochondrial DNA that is 
typical in libraries prepared using the targeted sequence capture approach5,6,9,21. FecalSeq may, however, co-enrich 
nuclear DNA from exogenous eukaryotes such as from plant or animal digesta. Care should therefore be taken 
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to minimize the presence of exogenous eukaryotic tissues or cells, although the degree to which this is a problem 
in practice is currently unknown. As cell-wall-bound plant cells may be more likely to pass through the digestive 
tract intact, extraction methods that minimize lysis of cell walls should be preferred. We speculate that prey 
DNA from carnivorous animals may be more difficult to partition from host DNA. While our comparisons of 
inbreeding coefficients, unique alleles, and locus-by-locus statistical tests from matched blood and fecal samples 
revealed no significant effect of sample type and therefore enrichment, our small sample size limits our power to 
detect differences with small effect size. Subsequent studies with larger sample sizes may detect a significant effect 
of enrichment, but one which may be negligible or correctable for some applications.

Since PCR amplification of DNA from feces was first achieved in the 1990s3,34,35, noninvasive genetic studies 
have revolutionized our understanding of the evolution, ecology, and behavior of nonmodel organisms. By facil-
itating low-cost genomic-scale sequencing from feces, our method connects a community of field researchers 
with the benefits of massively parallel sequencing, ushering noninvasive organism studies into the genomic age.

Methods
Samples. Blood and fecal samples were collected from six captive baboons (genus Papio) housed at the 
Southwest National Primate Research Center (SNPRC) at the Texas Biomedical Research Institute. The indi-
viduals were of either P. anubis or hybrid ancestry (Supplemental Table S1). All six baboons were fed a diet 
manufactured by Purina LabDiet (“Monkey Diet 15%”) containing 15% minimum crude protein, 4% minimum 
crude fat, and 10% maximum crude fiber. In separate sedation events, blood and feces were collected from the 
same individual who was isolated for the duration of the sedation. Following centrifugation, the buffy coat was 
isolated from blood samples and stored at −80 °C. 2 ml of feces were also collected into 8 ml tubes containing 4 ml 
of RNALater (Ambion).

In addition, we collected or obtained fecal samples from 46 wild baboons in Zambia. Samples were collected 
between 2006 and 2015 from the Luangwa Valley, the Lower Zambezi National Park, Choma, or Kafue National 
Park and are of P. kindae × P. cynocephalus, P. ursinus griseipes, or P. kindae × P. ursinus griseipes ancestry 
(Supplemental Table S1). As with the SNPRC samples, 2 ml of feces were collected into 8 ml tubes containing 
4 ml of RNALater. In contrast to the SNPRC samples, however, these samples were collected noninvasively from 
unhabituated animals in remote field conditions. Samples therefore could not be attributed to particular ani-
mals, although samples were selected to avoid duplication using either field observations or geographic distance. 
Following collection, samples were stored without refrigeration for 1–6 months before being frozen at −20 °C for 
long-term storage.

All procedures involving live animals were carried out in accordance with relevant guidelines and regulations. 
Experimental procedures at SNPRC were conducted with approval by the Institutional Animal Care and Use 
Committee of the Texas Biomedical Research Institute (protocol #1403 PC 0). Sedation and blood draws were 
performed under the supervision of a veterinarian and animals were returned immediately to their enclosures 
following recovery. Sample collection in Zambia was conducted with approval by the Animal Studies Committee 
of Washington University (assurance #A-3381–01) and following local laws and regulations in Zambia.

Buffy coat extractions were performed using the QIAamp DNA Blood Mini Kit (Qiagen), following manufac-
turer’s instructions. Fecal extractions were performed using the QIAamp DNA Stool Mini Kit (Qiagen) following 
manufacturer’s instructions for optimizing host DNA yields. DNA concentration and yield were measured using a 
Qubit dsDNA BR Assay (Life Technologies). In some cases, multiple DNA extractions from the same individuals 
were necessary when DNA was depleted over the course of this study.

We estimated the proportion of host DNA for each fecal DNA extraction using quantitative PCR (qPCR) by 
comparing estimates of host DNA concentration obtained by qPCR to estimates of total fecal DNA concentration 
obtained by Qubit. Amplification was conducted using universal mammalian MYCBP primers36 and evaluated 
against a standard curve constructed from the liver DNA of an individual baboon. Samples and standards were 
run in duplicate alongside positive and negative controls (see Supplemental Protocol for full details).

DNA enrichment. DNA was enriched using the NEBNext Microbiome DNA Enrichment Kit (New England 
Biolabs)22.

MBD2-Fc-bound magnetic beads were prepared according to manufacturer instructions in batches ranging 
from 40 to 160 μl. For each n μl batch, we prebound 0.1 × n μl MBD2-Fc protein to n μl protein A magnetic beads 
by incubating the mixture with rotation for 10 min at room temperature. The bound MBD2-Fc magnetic beads 
were then collected by magnet and washed twice with 1 ml ice-cold 1x bind/wash buffer before being resuspended 
in n μl ice-cold 1x bind/wash buffer.

As a pilot experiment, we prepared two successive libraries, library A and library B, following manufacturer’s 
instructions for capturing methylated host DNA, with minor protocol modifications incorporated for the second 
pilot library (library B). Library A included MBD-enriched fecal DNA from 4 SNPRC baboons and 2 Luangwa 
Valley baboons, as well as blood DNA from the same SNPRC baboons. Library B included MBD-enriched fecal 
DNA from 4 SNPRC baboons (with two repeats from library A), 4 Kafue National Park baboons, and 2 Luangwa 
Valley baboons, as well as blood DNA from 2 SNPRC baboons. For each fecal DNA sample, we combined 1–2 μg 
of extracted fecal DNA with 160 μl of prepared protein-bound beads and a variable volume of ice-cold 5x bind/
wash buffer for maintaining 1x concentration of bind/wash buffer. After combining beads and DNA, we incu-
bated the mixture at room temperature with rotation for 15 min. DNA and MBD2-Fc-bound magnetic beads were 
then collected by magnet and the supernatant removed. For samples in library A, we washed the collected beads 
with 1 ml of ice-cold 1x bind/wash buffer. For samples in library B, we conducted three expanded wash steps to 
maximize the removal of unbound DNA. For each wash in library B, we added 1 ml of ice-cold 1x bind/wash 
buffer and mixed the beads on a rotating mixer for three minutes at room temperature before collecting the beads 
by magnet and removing the supernatant. Following the final wash, we resuspended and incubated the beads at 
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65 °C with 150 μL of 1x TE buffer and 15 μL of Proteinase K for 20 min with occasional mixing. The eluted DNA 
was then separated by magnet, purified with 1.5x homemade SPRI bead mixture31, and quantified using a Qubit 
dsDNA HS Assay (Life Technologies).

Our pilot sequencing results from libraries A and B revealed large variation in the percentage of reads map-
ping to the baboon genome, with mapping percentages ranging from 1.1% to 79.3%, with much of the variation 
correlating with the proportion of host DNA in the unenriched fecal DNA sample (Supplemental Fig. S3). To 
expand the utility of the enrichment protocol to all fecal DNA samples, we conducted a series of capture exper-
iments designed to optimize the enrichment of host DNA from “low-quality” samples (i.e., samples with low 
proportions of host DNA). For these experiments, we artificially simulated fecal DNA by combining high-quality 
baboon liver or blood genomic DNA (liver: SNPRC ID #19334; blood: SNPRC ID #14068 or #25567) with E. 
coli DNA (K12 or ATCC 11303 strains) at controlled proportions. The resulting post-enrichment proportion of 
baboon and E. coli DNA was evaluated by qPCR in two analyses using (1) universal mammalian MYCBP36 and (2) 
universal bacterial 16 S rRNA (16 S)37 primers along with standards created from the same respective organisms 
(experiments and results are described in detail in Supplemental Table S2).

Based on these capture optimization experiments, we prepared subsequent libraries using a version of the 
protocol incorporating modifications demonstrated to improve enrichment. Despite preferentially binding 
CpG-methylated DNA, the MBD2-Fc bait complex nevertheless bound a fraction of nonmethylated DNA. We 
therefore aimed to minimize both the absolute and relative amount of nonmethylated DNA binding to the bead 
complex. In our tests, the amount and fraction of nonmethylated bound DNA was highest when the ratio of the 
MBD2-Fc magnetic bead complex to total DNA was high, suggesting a surplus of MBD2 binding sites given the 
relatively small fraction of CpG-methylated DNA. We therefore reduced the ratio of prepared MBD2-Fc-bound 
magnetic beads to total DNA by tuning the amount of beads to the estimated amount of CpG-methylated host 
DNA. Because the amount of CpG-methylated host DNA in feces is extremely low, this modification also greatly 
decreased the cost of the reagents. Through our optimization experiments, we found that incorporating an addi-
tional wash step reduced the amount of contaminating nonmethylated DNA captured. Finally, we developed a 
method for serial enrichment of the samples (repeating the enrichment protocol), which substantially improved 
results. Our initial serial enrichment experiments failed to recover DNA, likely due to the use of proteinase K 
(combined with TE buffer) in the manufacturer’s elution protocol. Hypothesizing that incomplete removal of 
proteinase K, even following bead cleanup, interfered with the enrichment protocol, we instead eluted DNA 
using a high (2 M) NaCl concentration, resulting in successful serial enrichment. These changes, along with a full 
modified protocol, are detailed in the Supplemental Protocol.

For our next two libraries, libraries C and D, we added a much smaller volume of prepared MBD2-Fc-bound 
magnetic beads (1–22 μl) based on the estimated proportion of starting host DNA, kept the capture reaction 
volume consistent at a relatively low 40 μl (concentrating samples as needed using a SPRI bead cleanup), added 
an extra wash step in which samples were resuspended in 100 μl of 1x bind/wash buffer then incubated at room 
temperature for 3 minutes with rotation, and eluted samples in 100 μl 2 M NaCl. For four fecal DNA samples in 
library C and all of library D, we serially enriched the samples by repeating the capture reaction with 30 μl of 
MBD-enriched DNA (post SPRI-bead cleanup). Library C included fecal DNA from 5 SNPRC baboons, 2 Kafue 
National Park baboons, and 1 Luangwa Valley baboon. Library D contained fecal DNA from 6 Lower Zambezi 
National Park baboons, 4 Choma baboons, and 30 Kafue National Park baboons. We prepared a final library, 
library E, from independently extracted blood DNA from five SNPRC baboons in order to quantify the stochas-
ticity associated with independent library preparation from independent extracts. The composition of libraries 
A-E are described in detail in Supplemental Tables S2-S3.

Library preparation and sequencing. Library preparation followed standard double-digest restriction 
site-associated DNA sequencing (ddRADseq) procedures27 with modifications to accommodate low input as 
described below.

For all samples, including blood DNA and MBD-enriched fecal DNA, we digested DNA with SphI and MluCI 
(New England Biolabs), following a ratio of 1 unit of each enzyme per 20 ng of DNA. Enzymes were diluted 
up to 10× using compatible diluents (New England Biolabs) to facilitate pipetting of small quantities, using an 
excess of enzyme if necessary to avoid pipetting less than 1 μl of the diluted enzyme mix. As the total amount 
of post-enrichment fecal DNA is by nature low, we adjusted adapter concentrations in the ligation reaction to 
~0.1 μM for barcoded P1 and ~3 μM for P2, which correspond to excesses of adapters between 1–2 orders of 
magnitude. Since adapter-ligated samples are multiplexed into pools in equimolar amounts, we made efforts 
to combine samples with similar concentrations and enrichment when known. We used the BluePippin (Sage 
Science) with a 1.5% agarose gel cassette for automated size selection of pooled individuals, with a target of 
300 bp (including adapters) and extraction of a “tight” collection range (±39 bp). For PCR amplification, we ran 
all reactions in quadruplicate to minimize PCR biases and attempted to limit the number of PCR cycles. As the 
concentration of post-size-selection pools was below the limits of detection without loss of a considerable fraction 
of the sample, estimation of the required number of PCR cycles was difficult. We therefore iteratively quanti-
fied products post-PCR and added cycles as necessary. The total number of PCR cycles per pool is reported in 
Supplemental Table S3, but was usually 24. Finally, libraries were sequenced using either Illumina MiSeq (libraries 
A-C; 2 × 150 paired-end) or Illumina HiSeq. 2500 (library D; 2 × 100 paired-end) sequencing with 30% spike in 
of PhiX control DNA.

Analysis. We demultiplexed reads by sample and mapped them to the baboon reference genome (Panu 
2.0; Baylor College of Medicine Human Genome Sequencing Center) using BWA with default parameters and 
the BWA-ALN algorithm38. For every pair of blood and fecal samples from the same individual, we downsam-
pled mapped reads to create new pairs with equal coverage in order to control for biases due to differences in 
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sequencing depth. After realignment around indels, we identified variants using GATK UnifiedGenotyper39, in 
parallel analyses (1) calling variants in all samples at once and (2) processing each sample in isolation to avoid 
biasing variant calls from other samples at the expense of accuracy. Homozygous sites matching the reference 
genome were listed as missing when variants were inferred in single individuals. Variants were filtered with 
GATK VariantFiltration (filters: QD < 2.0, MQ < 40.0, FS > 60.0, HaplotypeScore > 13.0, MQRankSum < −12.5, 
ReadPosRankSum < −8.0) and indels were excluded.

We digested the baboon reference genome in silico, tallied reads within each predicted RADtag, and gathered 
the following information about each region: length, GC percentage, and CpG count in region ± 5 kb. We also 
calculated read depth in these simulated RADtags. Distributions of blood and fecal RADtags’ length, GC percent-
age, and local CpG density (Supplemental Fig. S2) were compared using Wilcoxon rank sum tests and visually 
inspected for possible gross distortion due to widespread dropout.

If the fecal enrichment procedure caused widespread allelic dropout, the proportion of alleles unique 
to the blood samples would be higher than that to the fecal sample. We tallied these unique alleles by using 
VCFtools40 to compute discordance on a per-site basis “--diff-site-discordance” as well as a discordance matrix 
“--diff-discordance-matrix”, and parsed the results to compute unique SNP percentage in paired blood and fecal 
samples. We tested for an excess of unique SNPs in blood with a Wilcoxon signed rank test.

To quantify loss of heterozygosity due to allelic dropout, we computed the method-of-moments inbreeding 
coefficient, F for all blood-feces pairs with equalized coverage, using both the individually called and multi-sample 
called SNP sets. F was calculated using the “--het” argument in PLINK28,29. The presence of dropout is expected to 
inflate F. We tested for differences in paired samples’ estimates of F via a Wilcoxon signed rank test. The dataset is 
not filtered for missingness, so sequencing errors inferred to be true variants may inflate heterozygosity estimates, 
thus deflating F.

To create a stringently filtered dataset with high genotyping rate, we filtered the multi-sample called SNPs in 
PLINK28,29, retaining only those genotyped in at least 90% of samples and removing samples with genotypes at 
fewer than 10% of sites. This filtered set was further pruned for linkage disequilibrium by sliding a window of 50 
SNPs across the chromosome and removing one random SNP in each pair with r2 > 0.5. Using all samples, we 
performed multidimensional scaling to visualize identity by state (IBS). Using just the samples that were part of 
the same-individual blood-feces pairs, we then performed an association test and missingness chi-square test 
to detect allele frequencies or missingness that correlated with sample type. We did the same with the unfil-
tered dataset as well. Though we had few pairs of fecal samples from the same individual, we computed distance 
between pairs of samples from the same individual using the stringently filtered dataset to compare distance 
between and within sample types via a Wilcoxon signed rank test.

Data Availability. All raw sequencing reads are publicly accessible through the NCBI Sequence Read 
Archive (BioProject #369456, BioSample accessions #SAMN06286370 - SAMN06286448). All code generated 
for this project is released under a GNU v3.0 license, archived on Zenodo (doi:10.5281/zenodo.848299), and can 
be accessed at https://github.com/bergeycm/RAD-faex.
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